Format

Send to

Choose Destination
See comment in PubMed Commons below
Hum Brain Mapp. 2010 Sep;31(9):1339-47. doi: 10.1002/hbm.20934.

Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease.

Author information

1
Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA.

Abstract

BACKGROUND:

Histopathological studies and animal models suggest that hippocampal subfields may be differently affected by aging, Alzheimer's disease (AD), and other diseases. High-resolution images at 4 Tesla depict details of the internal structure of the hippocampus allowing for in vivo volumetry of different subfields. The aims of this study were as follows: (1) to determine patterns of volume loss in hippocampal subfields in normal aging, AD, and amnestic mild cognitive impairment (MCI). (2) To determine if measurements of hippocampal subfields provide advantages over total hippocampal volume for differentiation between groups.

METHODS:

Ninety-one subjects (53 controls (mean age: 69.3 ± 7.3), 20 MCI (mean age: 73.6 ± 7.1), and 18 AD (mean age: 69.1 ± 9.5) were studied with a high-resolution T2 weighted imaging sequence aimed at the hippocampus. Entorhinal cortex (ERC), subiculum, CA1, CA1-CA2 transition zone (CA1-2), CA3 & dentate gyrus (CA3&DG) were manually marked in the anterior third of the hippocampal body. Hippocampal volume was obtained from the Freesurfer and manually edited.

RESULTS:

Compared to controls, AD had smaller volumes of ERC, subiculum, CA1, CA1-2, and total hippocampal volumes. MCI had smaller CA1-2 volumes. Discriminant analysis and power analysis showed that CA1-2 was superior to total hippocampal volume for distinction between controls and MCI.

CONCLUSION:

The patterns of subfield atrophy in AD and MCI were consistent with patterns of neuronal cell loss/reduced synaptic density described by histopathology. These preliminary findings suggest that hippocampal subfield volumetry might be a better measure for diagnosis of early AD and for detection of other disease effects than measurement of total hippocampus.

PMID:
20839293
PMCID:
PMC2943433
DOI:
10.1002/hbm.20934
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center