Format

Send to

Choose Destination
Photochem Photobiol Sci. 2010 Oct 28;9(10):1286-300. doi: 10.1039/c0pp00167h. Epub 2010 Sep 13.

Engineered photoreceptors as novel optogenetic tools.

Author information

1
Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.

Abstract

Cellular processes and indeed the survival of entire organisms crucially depend on precise spatiotemporal coordination of a multitude of molecular events. A new tool in cell biology is denoted "optogenetics" which describes the use of genetically encoded, light-gated proteins, i.e. photoreceptors, which perturb and control cellular and organismal behavior in a spatiotemporally exact manner. Photoreceptors resemble fluorescent reporter proteins such as GFP in being genetically encoded, non-invasive, and applicable to intact cells and organisms. They are explicitly intended to modulate activity; in contrast, fluorescent proteins generally do not disturb the processes under study. Fluorescent proteins have revolutionized cell biology because they allow the monitoring of such processes by imaging techniques that offer superb spatiotemporal resolution and sensitivity. Optogenetics extends these advantages to offer control. The scope of optogenetics has recently been expanded beyond the use of naturally occurring photoreceptors by the biologically-inspired design of engineered (or synthetic) photoreceptors. These photoreceptors are derived by fusion of one or more light-absorbing sensor domains with an output or effector domain displaying the activity to be controlled. Here, we focus on the design and application of such engineered photoreceptors. We treat basic signaling principles and discuss the two photosensor classes which are currently most widely used in fusion-based design: LOV domains and phytochromes. Based on these principles, we develop general strategies for the engineering of photoreceptors. Finally, we review recently successful examples of the design and application of engineered photoreceptors. Our perspective provides guidelines for researchers interested in developing and applying novel optogenetic tools.

PMID:
20835487
DOI:
10.1039/c0pp00167h
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center