Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2010 Nov 2;49(43):9249-55. doi: 10.1021/bi101291d.

Multiple turnovers of the nicotino-enzyme PdxB require α-keto acids as cosubstrates.

Author information

1
Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA

Abstract

PdxB catalyzes the second step in the biosynthesis of pyridoxal phosphate by oxidizing 4-phospho-d-erythronate (4PE) to 2-oxo-3-hydroxy-4-phosphobutanoate (OHPB) with concomitant reduction of NAD(+) to NADH. PdxB is a nicotino-enzyme wherein the NAD(H) cofactor remains tightly bound to PdxB. It has been a mystery how PdxB performs multiple turnovers since addition of free NAD(+) does not reoxidize the enzyme-bound NADH following conversion of 4PE to OHPB. We have solved this mystery by demonstrating that a variety of physiologically available α-keto acids serve as oxidants of PdxB to sustain multiple turnovers. In a coupled assay using the next two enzymes of the biosynthetic pathway for pyridoxal phosphate (SerC and PdxA), we have found that α-ketoglutarate, oxaloacetic acid, and pyruvate are equally good substrates for PdxB (k(cat)/K(m) values ~1 × 10(4) M⁻¹s⁻¹). The kinetic parameters for the substrate 4PE include a k(cat) of 1.4 s⁻¹, a K(m) of 2.9 μM, and a k(cat)/K(m) of 6.7 × 10(6) M⁻¹s⁻¹. Additionally, we have characterized the stereochemistry of α-ketoglutarate reduction by showing that d-2-HGA, but not l-2-HGA, is a competitive inhibitor vs 4PE and a noncompetitive inhibitor vs α-ketoglutarate.

PMID:
20831184
PMCID:
PMC3295541
DOI:
10.1021/bi101291d
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center