Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Clin Nutr Metab Care. 2010 Nov;13(6):630-4. doi: 10.1097/MCO.0b013e32833f1ae5.

Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy.

Author information

1
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.

Abstract

PURPOSE OF REVIEW:

Loss of skeletal muscle mass is a common feature of a number of clinical scenarios including limb casting, bed rest, and various disorders such as HIV-AIDS, sepsis, cancer cachexia, heart failure, and uremia. Commonly, muscle disuse (hypodynamia) is the sole reason, or a large part, of why muscle mass is lost. The reduction in strength, or dynapenia, that accompanies these conditions is also a function of the degree of hypodynamia and is related to muscle loss.

RECENT FINDINGS:

The major and consistent finding in a number of human-based models of muscle wasting is a decline in the synthesis of new muscle proteins both in the postabsorptive and fed states. Thus, countermeasures are best suited to those that augment muscle protein synthesis and not those that attempt to counteract proteolysis. Our main thesis is that retention of muscle mass in wasting conditions will be achieved to the greatest extent by focussing on increased muscle use with moderate-to-high resistance loads as the primary countermeasure with a secondary countermeasure being to provide adequate nutritional support. Either intervention alone will alleviate some part of hypodynamia-induced muscle mass loss and dynapenia; however, together nutrition and muscular contraction will result in greater mitigation of muscle loss.

SUMMARY:

Advances in our understanding of hypodynamia-induced muscle loss, a condition common to almost all syndromes of muscle wasting, has led to a focus on reduced basal and feeding-induced elevations in protein synthesis. Countermeasures for wasting should focus on stimulating anabolism rather than alleviating catabolism.

PMID:
20829685
DOI:
10.1097/MCO.0b013e32833f1ae5
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wolters Kluwer
    Loading ...
    Support Center