Format

Send to

Choose Destination
Hear Res. 2010 Dec 1;270(1-2):110-8. doi: 10.1016/j.heares.2010.08.015. Epub 2010 Sep 6.

Salicylate restores transport function and anion exchanger activity of missense pendrin mutations.

Author information

1
Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.

Abstract

The SLC26A4 gene encodes the transmembrane protein pendrin, which is involved in the homeostasis of the ion concentration of the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Mutations in the SLC26A4 gene cause sensorineuronal hearing loss. However, the mechanisms responsible for such loss have remained unknown. Therefore, in this study, we focused on the function of ten missense pendrin mutations (p.P123S (Pendred syndrome), p.M147V (NSEVA), p.K369E (NSEVA), p.A372V (Pendred syndrome/NSEVA), p.N392Y (Pendred syndrome), p.C565Y (NSEVA), p.S657N (NSEVA), p.S666F (NSEVA), p.T721M (NSEVA) and p.H723R (Pendred syndrome/NSEVA)) reported in Japanese patients, and analyzed their cellular localization and anion exchanger activity using HEK293 cells transfected with each mutant gene. Immunofluorescent staining of the cellular localization of the pendrin mutants revealed that p.K369E and p.C565Y, as well as wild-type pendrin, were transported to the plasma membrane, while 8 other mutants were retained in the cytoplasm. Furthermore, we analyzed whether salicylate, as a pharmacological chaperone, restores normal plasma membrane localization of 8 pendrin mutants retained in the cytoplasm to the plasma membrane. Incubation with 10 mM of salicylate of the cells transfected with the mutants induced the transport of 4 pendrin mutants (p.P123S, p.M147V, p.S657Y and p.H723R) from the cytoplasm to the plasma membrane and restored the anion exchanger activity. These findings suggest that salicylate might contribute to development of a new method of medical treatment for sensorineuronal hearing loss caused by the mutation of the deafness-related proteins, including pendrin.

PMID:
20826203
DOI:
10.1016/j.heares.2010.08.015
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center