Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2010 Sep 29;132(38):13525-32. doi: 10.1021/ja106104h.

Rescue of K12G triosephosphate isomerase by ammonium cations: the reaction of an enzyme in pieces.

Author information

1
Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, USA.

Abstract

The K12G mutation at yeast triosephosphate isomerase (TIM) results in a 5.5 × 10(5)-fold decrease in k(cat)/K(m) for isomerization of glyceraldehyde 3-phosphate, and the activity of this mutant can be successfully "rescued" by NH(4)(+) and primary alkylammonium cations. The transition state for the K12G mutant TIM-catalyzed reaction is stabilized by 1.5 kcal/mol by interaction with NH(4)(+). The larger 3.9 kcal/mol stabilization by CH(3)CH(2)CH(2)CH(2)NH(3)(+) is due to hydrophobic interactions between the mutant enzyme and the butyl side chain of the cation activator. There is no significant transfer of a proton from alkylammonium cations to GAP at the transition state for the K12G mutant TIM-catalyzed reaction, because activation by a series of RNH(3)(+) shows little or no dependence on the pK(a) of RNH(3)(+). A comparison of k(cat)/K(m) = 6.6 × 10(6) M(-1) s(-1) for the wildtype TIM-catalyzed isomerization of GAP and the third-order rate constant of 150 M(-2) s(-1) for activation by NH(4)(+) of the K12G mutant TIM-catalyzed isomerization shows that stabilization of the bound transition state by the effectively intramolecular interaction of the cationic side chain of Lys-12 at wildtype TIM is 6.3 kcal/mol greater than that for the corresponding intermolecular interaction of NH(4)(+) at K12G mutant TIM.

PMID:
20822141
PMCID:
PMC2945285
DOI:
10.1021/ja106104h
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center