Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2010 Sep 8;99(5):1650-9. doi: 10.1016/j.bpj.2010.06.064.

Rationale for more diverse inhibitors in competition with substrates in HIV-1 protease.

Author information

Polymer Research Center, Bogazici University, Istanbul, Turkey.


The structural fluctuations of HIV-1 protease in interaction with its substrates versus inhibitors were analyzed using the anisotropic network model. The directions of fluctuations in the most cooperative functional modes differ mainly around the dynamically key regions, i.e., the hinge axes, which appear to be more flexible in substrate complexes. The flexibility of HIV-1 protease is likely optimized for the substrates' turnover, resulting in substrate complexes being dynamic. In contrast, in an inhibitor complex, the inhibitor should bind and lock down to inactivate the active site. Protease and ligands are not independent. Substrates are also more flexible than inhibitors and have the potential to meet the dynamic distributions that are inherent in the protease. This may suggest a rationale and guidelines for designing inhibitors that can better fit the ensemble of binding sites that are dynamically accessible to the protease.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center