Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Biol Ther. 2010 Nov 1;10(9):885-92. doi: 10.4161/cbt.10.9.13237. Epub 2010 Nov 1.

Smac mimetic reverses resistance to TRAIL and chemotherapy in human urothelial cancer cells.

Author information

1
Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA.

Abstract

PURPOSE:

inhibitors of apoptosis proteins (IAPs) have been shown to contribute to resistance of neoplastic cells to chemotherapy and to biologic antineoplastic agents. Consequently, new agents are being developed targeting this family of proteins. In a panel of bladder cancer cell lines, we evaluated a Smac mimetic that antagonizes several IAPs for its suitability for bladder cancer therapy. Experimental design: A panel of seven bladder cancer cell lines were evaluated for sensitivity to the Smac mimetic compound-A alone, TRAIL alone, chemotherapy alone, compound-A plus TRAIL, and compound-A plus chemotherapy by DNA fragmentation analysis. IAP levels and caspase activation were examined by western blotting. Release of caspase-3 from X-linked inhibitor of apoptosis protein (XIAP), the most effective IAP, was assessed by immunoprecipitation and western blotting. Finally, siRNA knockdown of XIAP was correlated with the sensitivity of cells to apoptosis induced by compound-A plus TRAIL by DNA fragmentation and western blotting.

RESULTS:

single-agent compound-A had little effect, but compound-A augmented TRAIL- and chemotherapy-induced apoptosis. Immunoblotting showed that combination treatment with compound-A and TRAIL resulted in cleavage of procaspase-3 and procaspase-7, activation of which irreversibly commits cells to apoptosis. Immunoprecipitation of XIAP showed displacement of active caspase-3 fragments from XIAP, supporting the proposed mechanism of action. Furthermore, siRNA-mediated silencing of XIAP similarly sensitized these cells to apoptosis.

EXPERIMENTAL DESIGN:

a panel of seven bladder cancer cell lines were evaluated for sensitivity to the Smac mimetic compound-Alone, TRAIL alone, Chemotherapy alone, compound-A plus TRAIL and compound-A plus chemotherapy by DNA fragmentation analysis. IAP levels and caspase activation were examined by western blotting. Release of caspase-3 from X-linked inhibitor of apoptosis protein (XIAP), the most effective IAP, was assessed by immunoprecipitation and western blotting. Finally siRNA knockdown of XIAP was correlated with the sensitivity of cells to apoptosis induced by compound-A plus TRAIL by DNA fragmentation and western blotting.

CONCLUSION:

our results suggest that targeting of XIAP with the Smac mimetic compound-A has the potential to augment the effects of a variety of chemotherapeutic and biologic therapies in bladder cancer.

PMID:
20814238
PMCID:
PMC3230293
DOI:
10.4161/cbt.10.9.13237
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center