Format

Send to

Choose Destination
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):84-94. doi: 10.1109/TNSRE.2010.2065241. Epub 2010 Sep 2.

Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve.

Author information

1
Departments of Otolaryngology/Head and Neck Surgery and Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA. natan@jhu.edu

Abstract

An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration, and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0- 325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28- 340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25- 175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation.

PMID:
20813652
PMCID:
PMC3110786
DOI:
10.1109/TNSRE.2010.2065241
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
Loading ...
Support Center