Format

Send to

Choose Destination
See comment in PubMed Commons below
Biofabrication. 2010 Jun;2(2):025002. doi: 10.1088/1758-5082/2/2/025002. Epub 2010 Mar 10.

Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

Author information

1
Center Laboratory of Biomanufacture and Tissue Engineering, Hang Zhou Dianzi University, Hangzhou 310018, People's Republic of China. xumingen@tsinghua.edu.cn

Abstract

Here we developed a composite scaffold of pearl/poly(lactic-co-glycolic acid) (pearl/PLGA) utilizing the low-temperature deposition manufacturing (LDM). LDM makes it possible to fabricate scaffolds with designed microstructure and macrostructure, while keeping the bioactivity of biomaterials by working at a low temperature. Process optimization was carried out to fabricate a mixture of pearl powder, PLGA and 1,4-dioxane with the designed hierarchical structures, and freeze-dried at a temperature of -40 degrees C. Scaffolds with square and designated bone shape were fabricated by following the 3D model. Marrow stem cells (MSCs) were seeded on the pearl/PLGA scaffold and then cultured in a rotating cell culture system. The adhesion, proliferation and differentiation of MSCs into osteoblasts were determined using scanning electronic microscopy, WST-1 assay, alkaline phosphatase activity assay, immunofluorescence staining and real-time reverse transcription polymerase chain reaction. The results showed that the composite scaffold had high porosity (81.98 +/- 3.75%), proper pore size (micropores: <10 microm; macropore: 495 +/- 54 microm) and mechanical property (compressive strength: 0.81 +/- 0.04 MPa; elastic modulus: 23.14 +/- 0.75 MPa). The pearl/PLGA scaffolds exhibited better biocompatibility and osteoconductivity compared with the tricalcium phosphate/PLGA scaffold. All these results indicate that the pearl/PLGA scaffolds fulfill the basic requirements of bone tissue engineering scaffold.

PMID:
20811130
DOI:
10.1088/1758-5082/2/2/025002
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center