Format

Send to

Choose Destination
See comment in PubMed Commons below
Biofabrication. 2010 Mar;2(1):014111. doi: 10.1088/1758-5082/2/1/014111. Epub 2010 Mar 10.

Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP).

Author information

1
Department of Physics, Southern Oregon University, Ashland, OR 97520, USA.

Abstract

Angiogenesis is one of the prerequisite steps for viable tissue formation. The ability to influence the direction and structure in the formation of a vascular system is crucial in engineering tissue. Using biological laser printing (BioLP), we fabricated branch/stem structures of human umbilical vein endothelial cells (HUVEC) and human umbilical vein smooth muscle cells (HUVSMC). The structure is simple as to mimic vascular networks in natural tissue but also allow cells to develop new, finer structures away from the stem and branches. Additionally, we printed co-culture structures by first depositing only HUVECs, followed by 24 h incubation to allow for adequate cell-cell communication and differentiation into lumina; these cell printed scaffold layers were then removed from incubation and inserted into the BioLP apparatus so that HUVSMCs could be directly deposited on top and around the previously printed HUVEC structures. The growth and differentiation of these co-culture structures was then compared to the growth of printed samples with either HUVECs or HUVSMCs alone. Lumen formation was found to closely mimic the original branch and stem structure. The beginning of a network structure is observed. HUVSMCs acted to limit HUVEC over-growth and migration when compared to printed HUVEC structures alone. HUVSMCs and HUVECS, when printed in close contact, appear to form cell-cell junctions around lumen-like structures. They demonstrate a symbiotic relationship which affects their development of phenotype when in close proximity of each other. Our results indicate that it is possible to direct the formation and growth of lumen and lumen network using BioLP.

PMID:
20811126
DOI:
10.1088/1758-5082/2/1/014111
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center