Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Biotechnol J. 2011 Apr;9(3):359-72. doi: 10.1111/j.1467-7652.2010.00562.x. Epub 2010 Aug 27.

Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed.

Author information

1
Department of Plant Pathology, Kansas State University, Manhattan, KN, USA.

Abstract

Phospholipase D (PLD) is capable of hydrolyzing membrane phospholipids, producing phosphatidic acid. To alter phospholipid profiles in soybean seed, we attenuated PLD enzyme activity by an RNA interference construct using the partial sequence from a soybean PLDα gene. Two transgenic soybean lines were established by particle inflow gun (PIG) bombardment by co-bombarding with pSPLDi and pHG1 vectors. The lines were evaluated for the presence and expression of transgenes thoroughly through the T(4) generation. PLD-suppressed soybean lines were characterized by decreased PLDα enzyme activity and decreased PLDα protein both during seed development and in mature seeds. There was no change in total phospholipid amount; however, the PLD-attenuated transgenic soybean seed had higher levels of di18:2 (dilinoleoyl)-phosphatidylcholine (PC) and -phosphatidylethanolamine (PE) in seeds than the non-transgenic lines. The increased polyunsaturation was at the expense of PC and PE species containing monounsaturated or saturated fatty acids. In addition to increased unsaturation in the phospholipids, there was a decrease in unsaturation of the triacylglycerol (TAG) fraction of the soybean seeds. Considering recent evidence for the notion that desaturation of fatty acids occurs in the PC fraction and that the PC→DAG (diacylglycerol)→TAG pathway is the major route of TAG biosynthesis in developing soybean seed, the current data suggest that PLDα suppression slows the conversion of PC to TAG. This would be consistent with PLD playing a positive role in that conversion. The data indicate that soybean PLD attenuation is a potentially useful approach to altering properties of edible and industrial soybean lecithin.

PMID:
20796246
PMCID:
PMC4393948
DOI:
10.1111/j.1467-7652.2010.00562.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center