Send to

Choose Destination
J Neurocytol. 1990 Oct;19(5):789-801.

Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers.

Author information

Department of Anatomy and Cell Biology, UCLA Center for the Health Sciences 90024.


Several plant lectins were used to characterize the cell-surface carbohydrates expressed on sensory ganglion cells and their central terminals in the spinal cord dorsal horn. In the rat, galactose-terminal glycoconjugates on a large subpopulation of small neurons whose central axons project to the substantia gelatinosa were demonstrated with the alpha-D-galactose-specific Griffonia Simplicifolia I-B4 (GSA) lectin. This neuron subset was labelled by alternative D-galactose-, N-Acetylgalactosamine-, and beta Gal(1,3)NAcGal-binding lectins. Similar GSA lectin reactivity was also illustrated in selected peripheral autonomic, gustatory and visceral sensory and enteric neurons, and the accessory olfactory bulb. The sensory neuron-specific isoenzyme, fluoride-resistant acid phosphatase (FRAP) co-localized with the GSA lectin, as did the monoclonal antibody (MAb) 2C5, which is directed against a lactoseries carbohydrate constituting a backbone structure of ABH human blood group antigens. In contrast, calcitonin gene-related peptide-immunoreactivity (CGRP-IR), used as a representative marker of peptidergic neurons, exhibited limited co-localization with GSA. A polyclonal anti-rat red blood cell (RBC) antibody co-localized with GSA, suggesting that lectin-reactive carbohydrates on rat sensory neurons are related to rat RBC antigens. In the human spinal cord, the L-fucose-binding Ulex europaeus-I (UEA) lectin also labelled the substantia gelatinosa; in rabbit, a small sensory ganglion cell subset and the spinal cord substantial gelatinosa was co-labelled by both the GSA and UEA lectins. These studies illustrate significant lectin-reactive cell surface carbohydrate expression by non-peptidergic, FRAP(+) sensory ganglion cells in the rat, and provide a means for visualizing the extensive, non-peptidergic, small sensory ganglion cell subpopulations, probably including a substantial proportion of nociceptive and unmyelinated peripheral axons.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center