Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Cell Biol. 2010 Oct;22(5):583-8. doi: 10.1016/j.ceb.2010.07.010. Epub 2010 Aug 20.

Conserved F-actin dynamics and force transmission at cell adhesions.

Author information

1
Institute for Biophysical Dynamics and James Franck Institute, University of Chicago, Chicago, IL 60637, USA.

Abstract

Adhesions are a central mechanism by which cells mechanically interact with the surrounding extracellular matrix (ECM) and neighboring cells. In both cell-ECM and cell-cell adhesions, forces generated within the actin cytoskeleton are transmitted to the surrounding environment and are essential for numerous morphogenic processes. Despite differences in many molecular components that regulate cell-cell and cell-ECM adhesions, the roles of F-actin dynamics and mechanical forces in adhesion regulation are surprisingly similar. Moreover, force transmission at adhesions occurs concomitantly with dynamic F-actin; proteins comprising the adhesion of F-actin to the plasma membrane must accommodate this movement while still facilitating force transmission. Thus, despite different molecular architectures, integrin and cadherin-mediated adhesions operate with common biophysical characteristics to transmit and respond to mechanical forces in multicellular tissue.

PMID:
20728328
PMCID:
PMC2948584
DOI:
10.1016/j.ceb.2010.07.010
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center