Send to

Choose Destination
IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1744-57. doi: 10.1109/TPAMI.2009.186.

Auto-context and its application to high-level vision tasks and 3D brain image segmentation.

Author information

Laboratory of Neuro Imaging, Department of Neurology, University of California, 635 Charles E. Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.


The notion of using context information for solving high-level vision and medical image segmentation problems has been increasingly realized in the field. However, how to learn an effective and efficient context model, together with an image appearance model, remains mostly unknown. The current literature using Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) often involves specific algorithm design in which the modeling and computing stages are studied in isolation. In this paper, we propose a learning algorithm, auto-context. Given a set of training images and their corresponding label maps, we first learn a classifier on local image patches. The discriminative probability (or classification confidence) maps created by the learned classifier are then used as context information, in addition to the original image patches, to train a new classifier. The algorithm then iterates until convergence. Auto-context integrates low-level and context information by fusing a large number of low-level appearance features with context and implicit shape information. The resulting discriminative algorithm is general and easy to implement. Under nearly the same parameter settings in training, we apply the algorithm to three challenging vision applications: foreground/background segregation, human body configuration estimation, and scene region labeling. Moreover, context also plays a very important role in medical/brain images where the anatomical structures are mostly constrained to relatively fixed positions. With only some slight changes resulting from using 3D instead of 2D features, the auto-context algorithm applied to brain MRI image segmentation is shown to outperform state-of-the-art algorithms specifically designed for this domain. Furthermore, the scope of the proposed algorithm goes beyond image analysis and it has the potential to be used for a wide variety of problems for structured prediction problems.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center