Send to

Choose Destination
See comment in PubMed Commons below
Neurobiol Aging. 2012 May;33(5):945-59. doi: 10.1016/j.neurobiolaging.2010.07.001. Epub 2010 Aug 17.

A complementary diffusion tensor imaging (DTI)-histological study in a model of Huntington's disease.

Author information

Bio-Imaging Laboratory, University of Antwerp (CGB), Wilrijk (Antwerp), Belgium.


In vivo diffusion tensor imaging (DTI) was performed on the quinolinic acid (QUIN) rat model of Huntington's disease, together with behavioral assessment of motor deficits and histopathological characterization. DTI and histology revealed the presence of a cortical lesion in 53% of the QUIN animals (QUIN(+ctx)). Histologically, QUIN(+ctx) were distinguished from QUIN(-ctx) animals by increased astroglial reaction within a subregion of the caudate putamen and loss of white matter in the external capsula. Although both techniques are complementary, the quantitative character of DTI makes it possible to pick up subtle differences in tissue microstructure that are not identified with histology. DTI demonstrated differential changes of fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) in the internal and external capsula, and within a subregion of the caudate putamen. It was suggested that FA increased due to a selective loss of the subcortical connections targeted by degenerative processes at the early stage of the disease, which might turn the striatum into a seemingly more organized structure. When tissue degeneration becomes more severe, FA decreased while AD, RD and MD increased.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center