Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2010 Sep 15;185(6):3369-78. doi: 10.4049/jimmunol.0902541. Epub 2010 Aug 18.

Proximal events in 7,12-dimethylbenz[a]anthracene-induced, stromal cell-dependent bone marrow B cell apoptosis: stromal cell-B cell communication and apoptosis signaling.

Author information

1
Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA.

Abstract

Intercellular communication is an essential process in stimulating lymphocyte development and in activating and shaping an immune response. B cell development requires cell-to-cell contact with and cytokine production by bone marrow stromal cells. However, this intimate relationship also may be responsible for the transfer of death-inducing molecules to the B cells. 7,12-Dimethylbenz[a]anthracene (DMBA), a prototypical polycyclic aromatic hydrocarbon, activates caspase-3 in pro/pre-B cells in a bone marrow stromal cell-dependent manner, resulting in apoptosis. These studies were designed to examine the hypothesis that an intrinsic apoptotic pathway is activated by DMBA and that the ultimate death signal is a DMBA metabolite generated by the stromal cells and transferred to the B cells. Although a loss of mitochondrial membrane potential did not occur in the DMBA/stromal cell-induced pathway, cytochrome c release was stimulated in B cells. Caspase-9 was activated, and formation of the apoptosome was required to support apoptosis, as demonstrated by the suppression of death in Apaf-1(fog) mutant pro-B cells. Investigation of signaling upstream of the mitochondria demonstrated an essential role for p53. Furthermore, DMBA-3,4-dihydrodiol-1,2-epoxide, a DNA-reactive metabolite of DMBA, was sufficient to upregulate p53, induce caspase-9 cleavage, and initiate B cell apoptosis in the absence of stromal cells, suggesting that production of this metabolite by the stromal cells and transfer to the B cells are proximal events in triggering apoptosis. Indeed, we provide evidence that metabolite transfer from bone marrow stromal cells occurs through membrane exchange, which may represent a novel communication mechanism between developing B cells and stromal cells.

PMID:
20720205
PMCID:
PMC2933279
DOI:
10.4049/jimmunol.0902541
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center