Send to

Choose Destination
See comment in PubMed Commons below
Acta Pharmacol Sin. 2010 Sep;31(9):1095-102. doi: 10.1038/aps.2010.127. Epub 2010 Aug 16.

COX-mediated endothelium-dependent contractions: from the past to recent discoveries.

Author information

Department of Pharmacology and Pharmacy, University of Hong Kong, China.


Endothelial cells release various substances to control the tone of the underlying vascular smooth muscle. Nitric oxide (NO) is the best defined endothelium-derived relaxing factor (EDRF). Endothelial cells can also increase vascular tone by releasing endothelium-derived contracting factors (EDCF). The over-production of EDCF contributes to the endothelial dysfunctions which accompanies various vascular diseases. The present review summarizes and discusses the mechanisms leading to the release of EDCFs derived from the metabolism of arachidonic acid. This release can be triggered by agonists such as acetylcholine, adenosine nucleotides or by stretch. All these stimuli are able to induce calcium influx into the endothelial cells, an effect which can be mimicked by calcium ionophores. The augmentation in intracellular calcium ion concentration initiates the release of EDCF. Downstream processes include activation of phospholipase A(2) (PLA(2)), cyclooxygenases (COX) and the production of reactive oxygen species (ROS) and vasoconstrictor prostanoids (endoperoxides, prostacyclin, thromboxane A(2) and other prostaglandins) which subsequently diffuse to, and activate thromboxane-prostanoid (TP) receptors on the vascular smooth muscle cells leading to contraction.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center