Format

Send to

Choose Destination
See comment in PubMed Commons below
J Colloid Interface Sci. 2010 Nov 1;351(1):35-42. doi: 10.1016/j.jcis.2010.07.039. Epub 2010 Jul 21.

Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules.

Author information

1
Dicle University, Faculty of Arts and Sciences, Dept. of Chemistry, Diyarbakir, Turkey.

Abstract

Gold nanoparticles (AuNPs) with about 6 nm size were produced and stabilized with mercaptopropionic acid (MPA) film to produce a monolayer protected cluster (MPC) of AuS(CH(2))(2)COOH. 4-Aminothiophenol (ATP) molecules were introduced to the activated carboxylic acid ends of the film surrounding the AuNPs to produce AuS(CH(2))(2)CONHPhSH MPC. These modified AuNPs were again self-assembled with Au@Ag core-shell bimetallic nanoparticles via the -SH groups to produce an organic bridge between Au and Au@Ag metallic nanoparticles. An unusually strong enhancement of the Raman signals was observed and assigned to the plasmon coupling between the AuNPs and Au@Ag NPs bridged assembly. Formation of AuS(CH(2))(2)COOH and AuS(CH(2))(2)CONHPhSH clusters and AuS(CH(2))(2)CONHPhS(Au@Ag) assembly is confirmed by UV-Vis, reflection-absorption IR spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS), as well as by TEM analysis. The SERS activity of the AuNPs and Au@Ag NPs was tested using the HS(CH(2))(2)CONHPhSH molecule as a probe to compare the effectiveness of monometallic and bimetallic systems. SERS spectra show that Au@Ag bimetallic nanoparticles are very effective SERS-active substrates.

PMID:
20701922
DOI:
10.1016/j.jcis.2010.07.039
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center