Send to

Choose Destination
Biochemistry. 1991 Jul 16;30(28):7027-33.

Comparative mutagenesis of O6-methylguanine and O4-methylthymine in Escherichia coli.

Author information

Department of Chemistry, Whitaker College of Health Sciences and Technology, Cambridge, Massachusetts.


The qualitative and quantitative features of mutagenesis by two DNA adducts of carcinogenic alkylating agents, O6-methylguanine (m6G) and O4-methylthymine (m4T), were examined in vivo. The deoxyhexanucleotides 5'-GCTAGC-3' and 5'-GCTAGC-3' were synthesized, where the underlined bases are the positions of m4T or m6G, respectively. By use of recombinant DNA techniques, the respective hexanucleotides or an unmodified control were inserted into a six-base gap in the otherwise duplex genome of the Escherichia coli virus M13mp19-NheI. The duplex adducted genome was converted to single-stranded form and introduced into an E. coli strain that was phenotypically normal with regard to m6G/m4T repair, a strain deficient in repair by virtue of an insertion in the gene encoding the Ada-m6G/m4T DNA methyltransferase, or the same two cell lines after challenge with N-methyl-N'-nitro-N-nitrosoguanidine. Treatment with this alkylating agent chemically compromises alkyl-DNA repair functions. The mutation efficiency of m6G was low or undetectable (0-1.7%) in all cell systems tested, owing, we believe, to rapid repair. In striking contrast, the mutagenicity of m4T was high (12%) in cells fully competent to repair alkylation damage and was roughly doubled when those cells were pretreated with N-methyl-N'-nitro-N-nitrosoguanidine to suppress repair. Taken together, these data suggest that m4T is potentially more mutagenic than m6G and, if formed by a DNA methylating agent, may pose a significant threat to the genetic integrity of an organism.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center