Send to

Choose Destination
Mol Pharm. 2010 Dec 6;7(6):2077-92. doi: 10.1021/mp1001922. Epub 2010 Sep 21.

Transport and metabolism of radiolabeled choline in hepatocellular carcinoma.

Author information

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.


Altered choline (Cho) metabolism in cancerous cells can be used as a basis for molecular imaging with PET using radiolabeled Cho. In this study, the metabolism of tracer Cho was investigated in a woodchuck hepatocellular carcinoma (HCC) cell line (WCH17) and in freshly derived rat hepatocytes. The transporter responsible for [(11)C]-Cho uptake in HCC was also characterized in WCH17 cells. The study helped to define the specific mechanisms responsible for radio-Cho uptake seen on the PET images of primary liver cancer such as HCC. Cells were pulsed with [(14)C]-Cho for 5 min and chased for varying durations in cold media to simulate the rapid circulation and clearance of [(11)C]-Cho. Radioactive metabolites were extracted and analyzed by radio-HPLC and radio-TLC. The Cho transporter (ChoT) was characterized in WCH17 cells. WCH17 cells showed higher (14)C uptake than rat primary hepatocytes. [(14)C]-Phosphocholine (PC) was the major metabolite in WCH17. In contrast, the intracellular Cho in primary hepatocytes was found to be oxidized to betaine (partially released into media) and, to a lesser degree, phosphorylated to PC. [(14)C]-Cho uptake by WCH17 cells was found to have both facilitative transport and nonfacilitative diffusion components. The facilitative transport was characterized by Na(+) dependence and low affinity (K(m) = 28.59 ± 6.75 μM) with partial energy dependence. In contrast, ChoT in primary hepatocytes is Na(+) independent and low affinity. Our data suggest that transport and phosphorylation of Cho are responsible for the tracer accumulation during [(11)C]-Cho PET imaging of HCC. WCH17 cells incorporate [(14)C]-Cho preferentially into PC. Conversion of [(14)C]-PC into phosphatidylcholine occurred slowly in vitro. Basal oxidation and phosphorylation activities in surrounding hepatic tissue contribute to the background seen in [(11)C]-Cho PET images.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center