Format

Send to

Choose Destination
See comment in PubMed Commons below
Langmuir. 2010 Aug 17;26(16):13195-200. doi: 10.1021/la101903r.

Polymeric crowding agents improve passive biomacromolecule encapsulation in lipid vesicles.

Author information

1
Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Abstract

Large solutes such as high molecular weight proteins can be difficult to encapsulate in lipid vesicles. Passive trapping of these macromolecular solutes during vesicle formation typically results in concentrations inside the vesicles that are much lower than in the external solution. Here, we investigated the effect of macromolecular crowding on passive encapsulation of biological macromolecules with molecular weights ranging from 52 kDa to 660 kDa within both individual giant lipid vesicles (GVs, > 3 microm diameter) and populations of 200 nm diameter large unilamellar vesicles (LUVs). Fluorescently labeled biomacromolecules were encapsulated during vesicle formation in the presence or absence of three weight percent poly(ethylene glycol) (PEG; 8 kDa) or dextran 500 kDa, which served as crowding agents. Encapsulation efficiency of the labeled biomolecules was higher for the lower molecular weight solutes, with internal concentrations essentially equal to external concentrations for labeled biomacromolecules with hydrodynamic radii (r(h)) less than 10 nm. In contrast, internal concentrations were reduced markedly for larger solutes with r(h) > or = 10 nm. Addition of PEG or dextran during vesicle formation improved encapsulation of these larger proteins up to the same levels as observed for the smaller proteins, such that internal and external concentrations were equal. This observation is consistent with PEG and dextran acting as volume excluders, reducing the hydrodynamic radius of the biomacromolecules and increasing their encapsulation. This work demonstrates a simple and general route to improved encapsulation of otherwise poorly encapsulated macromolecular solutes in both GV and LUVs up to their concentration in the solution present during vesicle formation.

PMID:
20695558
PMCID:
PMC2919175
DOI:
10.1021/la101903r
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center