Format

Send to

Choose Destination
Nat Mater. 2010 Sep;9(9):730-5. doi: 10.1038/nmat2822. Epub 2010 Aug 8.

Designer spoof surface plasmon structures collimate terahertz laser beams.

Abstract

Surface plasmons have found a broad range of applications in photonic devices at visible and near-infrared wavelengths. In contrast, longer-wavelength surface electromagnetic waves, known as Sommerfeld or Zenneck waves, are characterized by poor confinement to surfaces and are therefore difficult to control using conventional metallo-dielectric plasmonic structures. However, patterning the surface with subwavelength periodic features can markedly reduce the asymptotic surface plasmon frequency, leading to 'spoof' surface plasmons with subwavelength confinement at infrared wavelengths and beyond, which mimic surface plasmons at much shorter wavelengths. We demonstrate that by directly sculpting designer spoof surface plasmon structures that tailor the dispersion of terahertz surface plasmon polaritons on the highly doped semiconductor facets of terahertz quantum cascade lasers, the performance of the lasers can be markedly enhanced. Using a simple one-dimensional grating design, the beam divergence of the lasers was reduced from approximately 180 degrees to approximately 10 degrees, the directivity was improved by over 10 decibels and the power collection efficiency was increased by a factor of about six compared with the original unpatterned devices. We achieve these improvements without compromising high-temperature performance of the lasers.

PMID:
20693995
DOI:
10.1038/nmat2822

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center