Send to

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2010 Oct 7;10(19):2559-65. doi: 10.1039/c004192k. Epub 2010 Aug 5.

Integration in a multilayer microfluidic chip of 8 parallel cell sorters with flow control by sol-gel transition of thermoreversible gelation polymer.

Author information

Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.


Microfluidic systems have significant implications in the field of cell separation since they could provide platforms with inexpensive, disposable and sterile structures. Here, we present a novel strategy to integrate microfluidic sorters into a single chip for high throughput sorting. Our parallel sorter consists of a microfluidic chip with a three-dimensional channel network that utilizes flow switching by a heat-induced sol-gel transition of thermoreversible gelation polymer. The 8 parallel sheathed sample flows were realized by injecting sample and buffer solutions into only 2 inlets. The sheathed flows enabled disposal of unwanted sample waste without laser irradiation, and collection of wanted sample upon irradiation. As an application of the sorter, two kinds of fluorescent microspheres were separated with recovery ratio and purity of 70% or 90% at throughputs of about 100 or 20 particles per second, respectively. Next, Escherichia coli cells expressing green fluorescent protein were separated from those expressing DsRed with recovery ratio and purity of 90% at a throughput of about 20 cells per second.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center