Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Image Anal. 2011 Aug;15(4):622-39. doi: 10.1016/j.media.2010.07.002. Epub 2010 Jul 17.

DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting.

Author information

1
Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market St., Ste 380, Philadelphia, PA 19104, USA. Yangming.Ou@uphs.upenn.edu

Abstract

A general-purpose deformable registration algorithm referred to as "DRAMMS" is presented in this paper. DRAMMS bridges the gap between the traditional voxel-wise methods and landmark/feature-based methods with primarily two contributions. First, DRAMMS renders each voxel relatively distinctively identifiable by a rich set of attributes, therefore largely reducing matching ambiguities. In particular, a set of multi-scale and multi-orientation Gabor attributes are extracted and the optimal components are selected, so that they form a highly distinctive morphological signature reflecting the anatomical and geometric context around each voxel. Moreover, the way in which the optimal Gabor attributes are constructed is independent of the underlying image modalities or contents, which renders DRAMMS generally applicable to diverse registration tasks. A second contribution of DRAMMS is that it modulates the registration by assigning higher weights to those voxels having higher ability to establish unique (hence reliable) correspondences across images, therefore reducing the negative impact of those regions that are less capable of finding correspondences (such as outlier regions). A continuously-valued weighting function named "mutual-saliency" is developed to reflect the matching uniqueness between a pair of voxels implied by the tentative transformation. As a result, voxels do not contribute equally as in most voxel-wise methods, nor in isolation as in landmark/feature-based methods. Instead, they contribute according to the continuously-valued mutual-saliency map, which dynamically evolves during the registration process. Experiments in simulated images, inter-subject images, single-/multi-modality images, from brain, heart, and prostate have demonstrated the general applicability and the accuracy of DRAMMS.

PMID:
20688559
PMCID:
PMC3012150
DOI:
10.1016/j.media.2010.07.002
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center