Format

Send to

Choose Destination
Theor Popul Biol. 2010 Sep;78(2):77-92. doi: 10.1016/j.tpb.2010.05.004.

A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit.

Author information

1
Department of Statistics, University of Oxford, OX1 3TG, UK. etheridge@stats.ox.ac.uk

Abstract

The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the lamda-Fleming-Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and lamda-coalescent models are expressed as mixtures of the transition functions of the dual process.

PMID:
20685218
DOI:
10.1016/j.tpb.2010.05.004
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center