Format

Send to

Choose Destination
Nat Mater. 2010 Sep;9(9):762-7. doi: 10.1038/nmat2814. Epub 2010 Aug 1.

Photon-enhanced thermionic emission for solar concentrator systems.

Author information

1
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.

Abstract

Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.

PMID:
20676086
DOI:
10.1038/nmat2814

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center