Format

Send to

Choose Destination
See comment in PubMed Commons below
Cardiovasc Res. 2011 Jan 1;89(1):157-65. doi: 10.1093/cvr/cvq251. Epub 2010 Jul 29.

Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair.

Author information

  • 1The Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. taosheng.li@cshs.org

Abstract

AIMS:

the ex vivo expansion of cardiac stem cells from minimally invasive human heart biopsies yields tens of millions of cells within 3-4 weeks, but chromosomal abnormalities were frequently detected in preliminary production runs. Here we attempt to avoid aneuploidy and improve cell quality by expanding human cardiac stem cells in physiological low-oxygen (5% O(2)) conditions, rather than in traditional culture in a general CO(2) incubator (20% O(2)).

METHODS AND RESULTS:

human heart biopsies (n = 16) were divided and processed in parallel to expand cardiac stem cells under 5% or 20% O(2). Compared with 20% O(2), 5% O(2) culture doubled the cell production and markedly diminished the frequency of aneuploidy. Cells expanded in 5% O(2) showed lower intracellular levels of reactive oxygen species, less cell senescence, and higher resistance to oxidative stress than those grown in 20% O(2), although the expression of stem cell antigens and adhesion molecules was comparable between groups, as was the paracrine secretion of growth factors into conditioned media. In vivo, the implantation of 5% O(2) cells into infarcted hearts of mice resulted in greater cell engraftment and better functional recovery than with conventionally cultured cells.

CONCLUSION:

the expansion of human adult cardiac stem cells in low oxygen increased cell yield, and the resulting cells were superior by various key in vitro and in vivo metrics of cell quality. Physiological oxygen tensions in culture facilitate the ex vivo expansion of healthy, biologically potent stem cells.

PMID:
20675298
PMCID:
PMC3002866
DOI:
10.1093/cvr/cvq251
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center