#### Send to
jQuery(document).ready( function () {
jQuery("#send_to_menu input[type='radio']").click( function () {
var selectedValue = jQuery(this).val().toLowerCase();
var selectedDiv = jQuery("#send_to_menu div." + selectedValue);
if(selectedDiv.is(":hidden")){
jQuery("#send_to_menu div.submenu:visible").slideUp();
selectedDiv.slideDown();
}
});
});
jQuery("#sendto").bind("ncbipopperclose", function(){
jQuery("#send_to_menu div.submenu:visible").css("display","none");
jQuery("#send_to_menu input[type='radio']:checked").attr("checked",false);
});

# The influence of the A-current on the dynamics of an oscillator-follower inhibitory network.

### Author information

- 1
- Department of Mathematical Sciences, New Jersey Institute of Technology Newark, NJ 07102 yu.zhang@njit.edu.

### Abstract

The transient potassium A-current is present in almost all neurons and plays an essential role in determining the timing and frequency of action potential generation. We use a three-variable mathematical model to examine the role of the A-current in a rhythmic inhibitory network, as is common in central pattern generation. We focus on a feed-forward architecture consisting of an oscillator neuron inhibiting a follower neuron. We use separation of time scales to demonstrate that the trajectory of the follower neuron within each cycle can be tracked by analyzing the dynamics on a 2-dimensional slow manifold that as determined by the two slow model variables: the recovery variable and the inactivation of the A-current. The steady-state trajectory, however, requires tracking the slow variables across multiple cycles. We show that tracking the slow variables, under simplifying assumptions, leads to a one-dimensional map of the unit interval with at most a single discontinuity depending on g(A), the maximal conductance of the A-current, or other model parameters. We demonstrate that, as the value of g(A) is varied, the trajectory of the follower neuron goes through a set of bifurcations to produce n:m periodic solutions where the follower neuron becomes active m times for each n cycles of the oscillator. Using a generalized Pascal triangle, each n:m trajectory can be constructed as a combination of solutions from a higher level of the triangle.

- PMID:
- 20664815
- PMCID:
- PMC2906914
- DOI:
- 10.1137/090760994