Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Soc Trans. 2010 Aug;38(4):928-33. doi: 10.1042/BST0380928.

The stressosome: molecular architecture of a signalling hub.

Author information

1
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.

Abstract

The stressosome co-ordinates the response of Bacillus subtilis to the imposition of a variety of physical and environmental insults. These stresses include fluctuations in salt concentration, the presence of ethanol, changes in pH and even the level of UV light. Despite the obvious and significant differences between these quite different physicochemical stimuli, the result is the same: the stressosome is phosphorylated by a key kinase to initiate the sigma(B) cascade. The phosphorylation of the stressosome initiates a signal transduction system that up-regulates the expression of stress-responsive genes so that the Bacillus can survive the imposition of stress. Hence the stressosome acts as a hub, receiving manifold different stimuli to effect a single outcome. Using single-particle analysis of cryo-electron micrographs, we have been able to reconstruct a series of molecular envelopes of the stressosome. These maps have been interpreted at near-atomic resolution with crystal structures of the individual components of the stressosome to provide the first visualization of this unique signalling hub. The macromolecular structure adopted by the stressosome provides the signalling cascade with the potential for co-operative behaviour, which we have also measured in live bacteria. These experiments are consistent with the tuning of the response of B. subtilis to stress relative to the magnitude of the insult.

PMID:
20658979
DOI:
10.1042/BST0380928
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center