Send to

Choose Destination
See comment in PubMed Commons below
Soft Matter. 2010 Aug 7;6(15):3669-3679.

Spontaneous formation of temperature-responsive assemblies by molecular recognition of a β-cyclodextrin containing block copolymer and poly(N-isopropylacrylamide).

Author information

Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA.


We report the construction of novel temperature-responsive assemblies based on a double hydrophilic block copolymer (consisting of a PEG block and a β-cyclodextrin-containing block, PEG-b-PCD) and poly(N-isopropylacrylamide) (PNIPAm). Thus formed nano-assemblies exhibit a spherical morphology and have a temperature-responsive loose core. The driving force for the formation of these assemblies was found to be the inclusion complexation interaction between the hydrophobic cavity of β-cyclodextrin and the isopropyl group of PNIPAm. The particle size of these assemblies changed reversibly in response to the external temperature change. The particle size also changed with the PNIPAm/PEG-b-PCD weight ratio. A model hydrophobic drug (indomethacin) was loaded into these assemblies with a high efficiency. An in vitro release study showed that the payload could be released in a sustained manner after an initial burst release. The release rate could be switched between high and low in an ON/OFF fashion by temperature. These results demonstrate that the nano-assemblies have high potential for applications in controlled drug delivery and biomedicine when temperature responsiveness is desired.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry Icon for PubMed Central
    Loading ...
    Support Center