Format

Send to

Choose Destination
Chemistry. 2010 Sep 10;16(34):10373-9. doi: 10.1002/chem.200903355.

Chiral transformation in protonated and deprotonated adipic acids through multistep internal proton transfer.

Author information

1
Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, 790-784 Pohang, South Korea.

Abstract

Protonated and deprotonated adipic acids (PAA: HOOC-(CH(2))(4)--COOH(2) (+) and DAA: HOOC-(CH(2))(4)-COO(-)) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H(2)O...H...OH(2))(+) Zundel-like symmetric hydrogen bonding, whereas that of DAA has H(3)O(+) Eigen-like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel-like ions for PAA and Eigen-like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH...O short hydrogen-bond stretching peaks are predicted in the range of 1000-1700 cm(-1) in the Car-Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen-bond peaks. The O-H-O stretching peaks in the range of 1800-2700 cm(-1) become insignificant above around 150 K and are almost washed out at about 300 K.

PMID:
20652911
DOI:
10.1002/chem.200903355

LinkOut - more resources

Full Text Sources

Other Literature Sources

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center