Send to

Choose Destination
Rejuvenation Res. 2010 Oct;13(5):547-51. doi: 10.1089/rej.2010.1025. Epub 2010 Jul 20.

Proteotoxicity and the contrasting effects of oxaloacetate and glycerol on Caenorhabditis elegans life span: a role for methylglyoxal?

Author information

School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Edgbaston, Birmingham, United Kingdom.


Because accumulation of altered proteins is the most common biochemical symptom of aging, it is at least possible that such proteotoxicity may cause aging and influence life span. The life span of the nematode worm Caenorhabditis elegans is strongly influenced by changes in the intracellular concentration of methylglyoxal (MG), a putative source of much age-related proteotoxicity and organelle, cellular, and molecular dysfunction. Glycerol has recently been shown to shorten, whereas oxaloacetate has been found to extend, life span in C. elegans. It is suggested here that glycerol and oxaloacetate exert opposing effects on MG formation in C. elegans. It is proposed that, if not secreted by aquaporin, glycerol is converted to glycerol phosphate and then to dihydroxyacetone phosphate (DHAP) via a reaction requiring nicotinamide adenine dinucleotide (NAD(+)). This inhibits operation of the glycerol phosphate cycle in which DHAP is converted into glycerol phosphate, which concomitantly regenerates NAD(+) from NADH, thereby ensuring glycolytic oxidation of glyceraldehyde-3-phosphate (G3P). Because DHAP and G3P spontaneously decompose into MG, and NAD(+) is required for conversion of G3P into phosphoglycerate, the glycerol-induced increased DHAP formation and decreased NAD(+) availability will increase the potential for MG generation. In contrast, oxaloacetate may decrease MG generation by stimulating the operation of the malate-oxaloacetate shuttle, in which oxaloacetate is converted to malate, which regenerates NAD(+) from NADH. By the ensuing G3P oxidation, increased NAD(+) availability will decrease the potential for MG formation. It should be noted that mitochondria are involved in the operation of the above cycle/shuttles and that increased NAD(+) availability also stimulates those sirtuin activities that increase mitogenesis and mitochondrial activity via effects on signal transduction and gene expression, which frequently accompany dietary restriction-induced life span extension.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center