Send to

Choose Destination
Mol Cell Proteomics. 2010 Nov;9(11):2337-53. doi: 10.1074/mcp.M110.000737. Epub 2010 Jul 16.

Glycoprotein capture and quantitative phosphoproteomics indicate coordinated regulation of cell migration upon lysophosphatidic acid stimulation.

Author information

Project Group Cell Signaling, Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany.


The lipid mediator lysophosphatidic acid (LPA) is a serum component that regulates cellular functions such as proliferation, migration, and survival via specific G protein-coupled receptors. The underlying signaling mechanisms are still incompletely understood, including those that operate at the plasma membrane to modulate cell-cell and cell-matrix interactions in LPA-promoted cell migration. To explore LPA-evoked phosphoregulation with a focus on cell surface proteins, we combined glycoproteome enrichment by immobilized lectins with SILAC-based quantitative phosphoproteomics. We performed biological replicate analyses in SCC-9 squamous cell carcinoma cells and repeatedly quantified the effect of 1.5- and 5-min LPA treatment on more than 700 distinct phosphorylations in lectin-purified proteins. We detected many regulated phosphorylation events on various types of plasma membrane proteins such as cell adhesion molecules constituting adherens junctions, desmosomes, and hemidesmosomes. Several of these LPA-regulated phosphorylation sites have been characterized in a biological context other than G protein-coupled receptor signaling, and the transfer of this functional information suggests coordinated and multifactorial cell adhesion control in LPA-induced cell migration. Additionally, we identified LPA-mediated activation loop phosphorylation of the serine/threonine kinase Wnk1 and verified a role of Wnk1 for LPA-induced cell migration in knock-down experiments. In conclusion, the glycoproteome phosphoproteomics strategy described here sheds light on incompletely understood mechanisms in LPA-induced cell migratory behavior.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center