Send to

Choose Destination
Peptides. 2010 Oct;31(10):1940-5. doi: 10.1016/j.peptides.2010.07.008. Epub 2010 Jul 15.

Mechanism of cigarette smoke-induced kinin B(1) receptor expression in rat airways.

Author information

Imperial Tobacco Canada Ltd, 3711 Saint Antoine West, Montréal, QC, Canada H4C 3P6.


Pulmonary inflammation is an important pathological feature of tobacco smoke related lung diseases such as chronic obstructive pulmonary disease (COPD). Kinin type 1 and type 2 receptors (B(1)R, B(2)R) are known to be associated with inflammatory responses of the lungs and other organs. In this study, we investigated whether cigarette smoke-induced airway inflammation could up-regulate B(1)R and B(2)R in correlation with IL-1β and TNF-α. Rat lung slices treated with 5 μg/ml total particulate matter (TPM) of cigarette smoke for 24 h showed an enhanced expression of B(1)R and IL-1β by 5-fold and 30-fold, respectively, in comparison to vehicle treatment (dimethyl sulfoxide). However, higher concentrations of TPM failed to induce B(1)R. No significant increase of B(2)R or TNF-α gene induction was observed. IL-1 receptor antagonist (IL-1Ra, 2 ng/ml) significantly blocked B(1)R gene induction by TPM, while 500 μM pentoxifylline, TNF-α inhibitor, reduced it partially. Western blot analysis showed a 2-fold enhanced expression of B(1)R in rat lung slices treated with 5 μg/ml TPM for 24 h and such protein expression was totally blocked by a co-treatment with IL-1Ra but not with pentoxifylline. In addition to the lower airways, rat trachea subchronically exposed to cigarette whole smoke exhibited 11-fold B(1)R gene induction in comparison with those exposed only to air. Our results demonstrate the involvement of B(1)R in cigarette smoke-induced airway inflammation through a mechanism which is mediated by the pro-inflammatory cytokine IL-1β.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center