Send to

Choose Destination
Cell Immunol. 2010;265(1):31-6. doi: 10.1016/j.cellimm.2010.06.010. Epub 2010 Jun 25.

GM-CSF induces bone marrow precursors of NOD mice to skew into tolerogenic dendritic cells that protect against diabetes.

Author information

Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4.


We have reported that GM-CSF treatment of NOD mice suppressed diabetes by increasing the number of tolerogenic dendritic cells (tDCs) and Tregs in the periphery. Here, we have investigated whether GM-CSF acted on NOD bone marrow DCs precursors to skew their differentiation to tDCs. DCs were generated from the bone marrow of GM-CSF-treated (GM.BMDCs) and PBS-treated (PBS.BMDCs) NOD mice and were assessed for their ability to acquire tolerogenic properties. Upon LPS stimulation, GM.BMDCs became fully mature, expressed high levels of PD-L1 and produced more IL-10 and less IL-12p70 and IFN-gamma than PBS.BMDCs. In addition, LPS-stimulated GM.BMDCs possessed a reduced capacity to activate diabetogenic CD8(+) T cells in a PD-1/PD-L1-dependent manner. A single injection of LPS-stimulated GM.BMDCs in NOD mice resulted in long-term protection from diabetes, in contrast to LPS-stimulated PBS.BMDCs. Our results showed that GM-CSF-treatment acted on bone marrow precursors to skew their differentiation into tDCs that protected NOD mice against diabetes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center