Send to

Choose Destination
Breast Cancer Res Treat. 2011 Jun;127(3):649-57. doi: 10.1007/s10549-010-1042-5. Epub 2010 Jul 16.

Overexpression of the urokinase receptor mRNA splice variant uPAR-del4/5 affects tumor-associated processes of breast cancer cells in vitro and in vivo.

Author information

Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany.


uPAR, the three-domain membrane receptor of the serine protease urokinase, plays a crucial role in tumor growth and metastasis. Several mRNA splice variants of this receptor have been reported. One of these, uPAR-del4/5, lacking exons 4 and 5, and thus encoding a uPAR form lacking domain DII, is specifically overexpressed in breast cancer and represents a statistically independent prognostic factor for distant metastasis-free survival in breast cancer patients. The aim of the present study was to examine the molecular and cellular properties of the encoded uPAR-del4/5 protein. To investigate the impact of the uPAR-del4/5 overexpression on in vitro and in vivo aspects of tumor progression (e.g., proliferation, adhesion, invasion, metastatic seeding, and/or metastatic growth), we combined the analysis of transfected cancer cell lines with a murine xenograft tumor model. Increased expression of uPAR-del4/5 in human cancer cells led to reduced adhesion to several extracellular matrix proteins and decreased invasion through Matrigel, while cell proliferation was not affected in vitro. Moreover, invasion of uPAR-del4/5 overexpressing cells was not altered by addition of urokinase, while that of uPAR-wild-type overexpressing cells was drastically increased. Accordingly, we observed that, in contrast to uPAR-wild-type, uPAR-del4/5 does not interact with urokinase. On the other hand, when overexpressed in human breast cancer cells, uPAR-del4/5 distinctly impaired metastatic dissemination and growth in vivo. We demonstrate that the uPAR-del4/5 mRNA splice variant mediates tumor-relevant biological processes in vitro and in vivo. Our results thus illustrate how tumor-specific alternative splicing can distinctly impact the biology of the tumor.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center