Format

Send to

Choose Destination
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1627-45. doi: 10.1109/TPAMI.2009.167.

Object detection with discriminatively trained part-based models.

Author information

1
Department of Computer Science, University of Chicago, 1100 E. 58th Street, Chicago, IL 60637, USA. pff@cs.uchicago.edu

Abstract

We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL data sets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI--SVM in terms of latent variables. A latent SVM is semiconvex, and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.

PMID:
20634557
DOI:
10.1109/TPAMI.2009.167
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center