Send to

Choose Destination
See comment in PubMed Commons below
Microbiology. 2010 Nov;156(Pt 11):3243-54. doi: 10.1099/mic.0.039545-0. Epub 2010 Jul 15.

Comparative genomics of the genus Bifidobacterium.

Author information

Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Italy.


Whole-genome sequencing efforts have revolutionized the study of bifidobacterial genetics and physiology. Unfortunately, the sequence of a single genome does not provide information on bifidobacterial genetic diversity and on how genetic variability supports improved adaptation of these bacteria to the environment of the human gastrointestinal tract (GIT). Analysis of nine genomes from bifidobacterial species showed that such genomes display an open pan-genome structure. Mathematical extrapolation of the data indicates that the genome reservoir available to the bifidobacterial pan-genome consists of more than 5000 genes, many of which are uncharacterized, but which are probably important to provide adaptive abilities pertinent to the human GIT. We also define a core bifidobacterial gene set which will undoubtedly provide a new baseline from which one can examine the evolution of bifidobacteria. Phylogenetic investigation performed on a total of 506 orthologues that are common to nine complete bifidobacterial genomes allowed the construction of a Bifidobacterium supertree which is largely concordant with the phylogenetic tree obtained using 16S rRNA genes. Moreover, this supertree provided a more robust phylogenetic resolution than the 16S rRNA gene-based analysis. This comparative study of the genus Bifidobacterium thus presents a foundation for future functional analyses of this important group of GIT bacteria.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Ingenta plc
    Loading ...
    Support Center