Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Mol Med. 2011 Jun;15(6):1319-28. doi: 10.1111/j.1582-4934.2010.01126.x. Epub 2010 Jul 12.

Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction.

Author information

1
Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA.

Abstract

Adult bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) exhibit a Sca-1(+)/Lin(-)/CD45(-) phenotype and can differentiate into various cell types, including cardiomyocytes and endothelial cells. We have previously reported that transplantation of a small number (1 × 10(6)) of freshly isolated, non-expanded VSEL-SCs into infarcted mouse hearts resulted in improved left ventricular (LV) function and anatomy. Clinical translation, however, will require large numbers of cells. Because the frequency of VSEL-SCs in the marrow is very low, we examined whether VSEL-SCs can be expanded in culture without loss of therapeutic efficacy. Mice underwent a 30 min. coronary occlusion followed by reperfusion and, 48 hrs later, received an intramyocardial injection of vehicle (group I, n = 11), 1 × 10(5) enhanced green fluorescent protein (EGFP)-labelled expanded untreated VSEL-SCs (group II, n = 7), or 1 × 10(5) EGFP-labelled expanded VSEL-SCs pre-incubated in a cardiogenic medium (group III, n = 8). At 35 days after myocardial infarction (MI), mice treated with pre-incubated VSEL-SCs exhibited better global and regional LV systolic function and less LV hypertrophy compared with vehicle-treated controls. In contrast, transplantation of expanded but untreated VSEL-SCs did not produce appreciable reparative benefits. Scattered EGFP(+) cells expressing α-sarcomeric actin, platelet endothelial cell adhesion molecule (PECAM)-1, or von Willebrand factor were present in VSEL-SC-treated mice, but their numbers were very small. No tumour formation was observed. We conclude that VSEL-SCs expanded in culture retain the ability to alleviate LV dysfunction and remodelling after a reperfused MI provided that they are exposed to a combination of cardiomyogenic growth factors and cytokines prior to transplantation. Counter intuitively, the mechanism whereby such pre-incubation confers therapeutic efficacy does not involve differentiation into new cardiac cells. These results support the potential therapeutic utility of VSEL-SCs for cardiac repair.

PMID:
20629987
PMCID:
PMC3064954
DOI:
10.1111/j.1582-4934.2010.01126.x
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center