Format

Send to

Choose Destination
Mol Gen Genet. 1991 Jun;227(2):318-29.

Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate.

Author information

1
Department of Molecular Genetics and Microbiology, Burroughs Wellcome Co., Research Triangle Park, NC 27709.

Abstract

The pathogenic yeast, Candida albicans, is insensitive to the anti-mitotic drug, benomyl, and to the dihydrofolate reductase inhibitor, methotrexate. Genes responsible for the intrinsic drug resistance were sought by transforming Saccharomyces cerevisiae, a yeast sensitive to both drugs, with genomic C. albicans libraries and screening on benomyl or methotrexate. Restriction analysis of plasmids isolated from benomyl- and methotrexate-resistant colonies indicated that both phenotypes were encoded by the same DNA fragment. Sequence analysis showed that the fragments were nearly identical and contained a long open reading frame of 1694 bp (ORF1) and a small ORF of 446 bp (ORF2) within ORF1 on the opposite strand. By site-directed mutagenesis, it was shown that ORF1 encoded both phenotypes. The protein had no sequence similarity to any known proteins, including beta-tubulin, dihydrofolate reductase, and the P-glycoprotein of the multi-drug resistance family. The resistance gene was detected in several C. albicans strains and in C. stellatoidea by DNA hybridization and by the polymerase chain reaction.

PMID:
2062311
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center