Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13312-7. doi: 10.1073/pnas.1005847107. Epub 2010 Jul 9.

Phosphorylation stabilizes Nanog by promoting its interaction with Pin1.

Author information

1
Section of Molecular Biology and Cell and Developmental Biology, Division of Biological Sciences, University of California, La Jolla, CA 92093-0322, USA.

Abstract

Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body, thus holding great promise as a renewable source of cells for human therapy. The mechanisms that maintain self-renewal of ESCs remain unclear. Here we show that Nanog, a transcription factor crucial for the self-renewal of ESCs, is phosphorylated at multiple Ser/Thr-Pro motifs. This phosphorylation promotes the interaction between Nanog and the prolyl isomerase Pin1, leading to Nanog stabilization by suppressing its ubiquitination. Inhibition of Pin1 activity or disruption of Pin1-Nanog interaction in ESCs suppresses their capability to self-renew and to form teratomas in immunodeficient mice. Therefore, in addition to the stringent transcriptional regulation of Nanog, the expression level of Nanog is also modulated by posttranslational mechanisms.

PMID:
20622153
PMCID:
PMC2922169
DOI:
10.1073/pnas.1005847107
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center