Send to

Choose Destination
Antioxid Redox Signal. 2011 Feb 1;14(3):489-503. doi: 10.1089/ars.2010.3416. Epub 2010 Oct 19.

Two tales of antioxidant enzymes on β cells and diabetes.

Author information

Department of Animal Science, Cornell University, Ithaca, New York 14853, USA.


Pancreatic islets contain low activities of catalase, selenium-dependent glutathione peroxidase 1 (GPX1), and Cu,Zn-superoxide dismutase 1 (SOD1). Thus, enhancing expression of these enzymes in islets has been unquestionably favored. However, such an attempt has produced variable metabolic outcomes. While β cell-specific overexpression of Sod1 enhanced mouse resistance to streptozotocin-induced diabetes, the same manipulation of catalase aggravated onset of type 1 diabetes in nonobese diabetic mice. Global overexpression of Gpx1 in mice induced type 2 diabetes-like phenotypes. Although knockouts of Gpx1 and Sod1 each alone or together decreased pancreatic β cell mass and plasma insulin concentrations, these knockouts improved body insulin sensitivity to different extents. Pancreatic duodenal homeobox 1, forkhead box A2, and uncoupling protein 2 are three key regulators of β cell mass, insulin synthesis, and glucose-stimulated insulin secretion. Phenotypes resulted from altering GPX1 and/or SOD1 were partly mediated through these factors, along with protein kinase B and c-jun terminal kinase. A shifted reactive oxygen species inhibition of protein tyrosine phosphatases in insulin signaling might be attributed to altered insulin sensitivity. Overall, metabolic roles of antioxidant enzymes in β cells and diabetes depend on body oxidative status and target functions. Revealing regulatory mechanisms for this type of dual role will help prevent potential pro-diabetic risk of antioxidant over-supplementation to humans.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center