Send to

Choose Destination
J Vis. 2010 May 1;10(5):25. doi: 10.1167/10.5.25.

Combination of subcortical color channels in human visual cortex.

Author information

School of Psychology, The University of Sydney, and the Australian Centre of Excellence in Vision Science, Sydney, Australia.


Mechanisms of color vision in cortex have not been as well characterized as those in sub-cortical areas, particularly in humans. We used fMRI in conjunction with univariate and multivariate (pattern) analysis to test for the initial transformation of sub-cortical inputs by human visual cortex. Subjects viewed each of two patterns modulating in color between orange-cyan or lime-magenta. We tested for higher order cortical representations of color capable of discriminating these stimuli, which were designed so that they could not be distinguished by the postulated L-M and S-(L + M) sub-cortical opponent channels. We found differences both in the average response and in the pattern of activity evoked by these two types of stimuli, across a range of early visual areas. This result implies that sub-cortical chromatic channels are recombined early in cortical processing to form novel representations of color. Our results also suggest a cortical bias for lime-magenta over orange-cyan stimuli, when they are matched for cone contrast and the response they would elicit in the L-M and S-(L + M) opponent channels.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center