Format

Send to

Choose Destination
Drugs. 2010 Jul 30;70(11):1349-62. doi: 10.2165/11537960-000000000-00000.

Drugs in development for influenza.

Author information

1
Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. dboltz@iitri.org

Abstract

The emergence and global spread of the 2009 pandemic H1N1 influenza virus reminds us that we are limited in the strategies available to control influenza infection. Vaccines are the best option for the prophylaxis and control of a pandemic; however, the lag time between virus identification and vaccine distribution exceeds 6 months and concerns regarding vaccine safety are a growing issue leading to vaccination refusal. In the short-term, antiviral therapy is vital to control the spread of influenza. However, we are currently limited to four licensed anti-influenza drugs: the neuraminidase inhibitors oseltamivir and zanamivir, and the M2 ion-channel inhibitors amantadine and rimantadine. The value of neuraminidase inhibitors was clearly established during the initial phases of the 2009 pandemic when vaccines were not available, i.e. stockpiles of antivirals are valuable. Unfortunately, as drug-resistant variants continue to emerge naturally and through selective pressure applied by use of antiviral drugs, the efficacy of these drugs declines. Because we cannot predict the strain of influenza virus that will cause the next epidemic or pandemic, it is important that we develop novel anti-influenza drugs with broad reactivity against all strains and subtypes, and consider moving to multiple drug therapy in the future. In this article we review the experimental data on investigational antiviral agents undergoing clinical trials (parenteral zanamivir and peramivir, long-acting neuraminidase inhibitors and the polymerase inhibitor favipiravir [T-705]) and experimental antiviral agents that target either the virus (the haemagglutinin inhibitor cyanovirin-N and thiazolides) or the host (fusion protein inhibitors [DAS181], cyclo-oxygenase-2 inhibitors and peroxisome proliferator-activated receptor agonists).

PMID:
20614944
PMCID:
PMC5558450
DOI:
10.2165/11537960-000000000-00000
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center