Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucl Med Biol. 2010 Jul;37(5):547-55. doi: 10.1016/j.nucmedbio.2010.03.006. Epub 2010 Apr 24.

Microfluidic approach for fast labeling optimization and dose-on-demand implementation.

Author information

  • 1Radiopharmacy Department, Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy. pascali@ifc.cnr.it

Abstract

INTRODUCTION:

The diffusion of PET as a pivotal molecular imaging modality has emphasized the need for new positron-emitting radiotracers to be used in diagnostic applications and research. Microfluidic represents an innovative approach, owing to its potential to increase radiochemical productivity in terms of yields, time reduction, precursor consumption and flexible experimental planning.

METHODS:

We focused on fluorine-18 labeling and used a microfluidic platform to perform sequential reactions, by using the same batch of (18)F-labeling solution on one or more substrates, during the same experimental session. A solid-phase extraction (SPE) workup procedure was also implemented in the system to provide a repeatable purification step.

RESULTS:

We were able to quickly optimize the conditions for labeling of ethyl and propyl ditosylate and of a new cannabinoid type 2 (CB2) receptor agonist, CB41. In all substrates, we obtained good incorporation yields (60% to 85%) in short (<90 s) reaction times. Single dosages of the CB2 ligand were sequentially prepared, upon request, in satisfactory quantities and purity for small animal PET scanning.

CONCLUSION:

This work demonstrates the usefulness of a microfluidic-based system for a rapid optimization of temperature, flow rate of reactants and their relative ratio in the labeling of different precursors by using the same (18)F-fluoride batch. This approach was used to obtain in sequence several injectable doses of a novel CB2 ligand, thus providing the proof of principle that microfluidic systems permit a dose-on-demand production of new radiotracers.

PMID:
20610159
DOI:
10.1016/j.nucmedbio.2010.03.006
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center