Format

Send to

Choose Destination
See comment in PubMed Commons below
Bioelectromagnetics. 2010 Oct;31(7):566-72. doi: 10.1002/bem.20596.

Effects of 50-Hz magnetic field exposure on hormone secretion and apoptosis-related gene expression in human first trimester villous trophoblasts in vitro.

Author information

  • 1Bioelectromagnetics Key Laboratory, Hangzhou, People's Republic of China. sunwj@zju.edu.cn

Abstract

Evidence from epidemiological and animal studies showed that exposure to extremely low frequency magnetic fields (ELF-MF) could produce deleterious effects on reproduction. In order to investigate the possible mechanism of MF exposure on reproductive effects, first trimester human chorionic villi at 8-10 weeks' gestation were obtained, and trophoblasts were isolated, cultured, and exposed to a 50-Hz MF for different durations. The human chorionic gonadotropin (hCG) and progesterone in the culture medium was measured by electrochemiluminescence immunoassay. The mRNA levels of apoptosis-related genes bcl-2, bax, caspase-3, p53, and fas in trophoblasts were analyzed using real-time RT-PCR. The results showed that exposure of trophoblasts to MF at 0.2 mT for 72 h did not affect secretion of hCG and progesterone from these cells. There was also no significant change in secretion of these hormones when trophoblasts were exposed to a 0.4 mT MF for 48 h. However, MF significantly inhibited hCG and progesterone secretion of trophoblasts after exposure for 72 h at 0.4 mT. Results of apoptosis-related gene expression analysis showed that, within 72 h of exposure at 0.4 mT, there was no significant difference between MF exposure and control on the expression pattern of each gene. Based on results of the present experiment, it is suggested that exposure to MF for a longer duration (72 h) could inhibit secretion of hCG and progesterone by human first trimester villous trophoblasts, however, the effect might not be related to trophoblast apoptosis.

PMID:
20607743
DOI:
10.1002/bem.20596
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center