Format

Send to

Choose Destination
J Pharmacol Exp Ther. 2010 Oct;335(1):85-91. doi: 10.1124/jpet.110.169755. Epub 2010 Jul 6.

Heme oxygenase-1 deficiency leads to alteration of soluble guanylate cyclase redox regulation.

Author information

1
Department of Medical Pharmacology, and Physiology, University of Missouri-Columbia, Columbia, MO 65212, USA. jonesa@health.missouri.edu

Abstract

Heme oxygenase-1 knockout, H(mox)1(-/-), mice exhibit exacerbated vascular lesions after ischemia-reperfusion and mechanical injury. Surprisingly, we found no studies that reported contractile responses and sensitivity to vasorelaxants in H(mox)1(-/-) mice. The contractile responses [superior mesenteric arteries (SMA), from female H(mox)1(-/-) mice] exhibited increased sensitivity to phenylephrine (p < 0.001). Cumulative addition of acetylcholine relaxed SMA, with the residual contraction remaining 2 times higher in H(mox)1(-/-) mice (p < 0.001). Sodium nitroprusside (SNP, an NO donor) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole [YC-1; acts directly on soluble guanylate cyclase (sGC)] led to further relaxation, yet the residual contraction remained 2 to 3 times higher in H(mox)1(-/-) than H(mox)1(+/+) mice (p < 0.001). Branches from H(mox)1(-/-) mesenteric and renal arteries also showed reduced relaxation (p < 0.025). Relaxation of SMA was measured to 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4'-(trifluoromethyl) biphenyl-4-yl] methoxy}phenyl)ethyl]amino}benzoic acid (BAY 60-2770), which is a more effective activator of oxidized/heme-free sGC; and to 5-cyclopropyl-2-{1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl}-pyrimidin-4-ylamine (BAY 41-2272), a more effective stimulator of reduced sGC. H(mox)1(-/-) arteries were 15 times more sensitive to BAY 60-2770 (p < 0.025) than were H(mox)1(+/+) arteries. Pretreatment with 1H-[1,2,4]oxadiazolo[3,4-a]quinoxalin-1-one (ODQ), an oxidizer of sGC, predictably shifted the BAY 60-2770 response of H(mox)1(+/+) to the left (p < 0.01) and BAY 41-2272 response to the right (p < 0.01). ODQ had little effect on the responses of H(mox)1(-/-) arteries, indicating that much of sGC was oxidized/heme-free. Western analyses of sGC in SMA indicated that both α1 and β1 subunit levels were reduced to <50% of H(mox)1(+/+) level (p < 0.025). These findings support the hypothesis that the antioxidant function of H(mox)1 plays a significant role in the maintenance of sGC in a reduced state, which is resistant to degradation and is sensitive to NO. This function may be especially important in reducing vascular damage during ischemia-reperfusion injury.

PMID:
20605906
PMCID:
PMC2957777
DOI:
10.1124/jpet.110.169755
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center