Format

Send to

Choose Destination
Nanotechnology. 2010 Jul 30;21(30):302001. doi: 10.1088/0957-4484/21/30/302001. Epub 2010 Jul 6.

Quantum dots and spin qubits in graphene.

Author information

1
Institut für Theoretische Physik und Astrophysik, University of Würzburg, Würzburg, Germany. precher@physik.uni-wuerzburg.de

Abstract

This is a review on graphene quantum dots and their use as a host for spin qubits. We discuss the advantages but also the challenges to use graphene quantum dots for spin qubits as compared to the more standard materials like GaAs. We start with an overview of this young and fascinating field and then discuss gate-tunable quantum dots in detail. We calculate the bound states for three different quantum dot architectures where a bulk gap allows for confinement via electrostatic fields: (i) graphene nanoribbons with armchair boundaries, (ii) a disc in single-layer graphene, and (iii) a disc in bilayer graphene. In order for graphene quantum dots to be useful in the context of spin qubits, one needs to find reliable ways to break the valley degeneracy. This is achieved here, either by a specific termination of graphene in (i) or in (ii) and (iii) by a magnetic field, without the need of a specific boundary. We further discuss how to manipulate spin in these quantum dots and explain the mechanism of spin decoherence and relaxation caused by spin-orbit interaction in combination with electron-phonon coupling, and by hyperfine interaction with the nuclear-spin system.

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center