Send to

Choose Destination
See comment in PubMed Commons below
Bone. 2010 Oct;47(4):718-28. doi: 10.1016/j.bone.2010.06.020. Epub 2010 Jun 27.

Human embryonic stem cell-derived CD34+ cells function as MSC progenitor cells.

Author information

  • 1Department of Medicine and Stem Cell Institute, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA.


Mesenchymal stem/stromal cells (MSCs) have been isolated from various tissues and utilized for an expanding number of therapies. The developmental pathways involved in producing MSCs and the phenotypic precursor/progenitor cells that give rise to human MSCs remain poorly defined. Human embryonic stem cells (hESCs) have the capability to generate functional hemato-endothelial cells and other mesoderm lineage cells. hESC-derived CD73(+) cells have been isolated and found to have similar phenotypic and functional characteristics as adult MSCs. Here we demonstrate hESC-derived CD34(+)CD73(-) cells can serve as MSC progenitor cells with the ability to differentiate into adipocytes, osteoblasts and chondrocytes. Additionally, gene array analysis of hESC-derived MSCs show substantially different gene expression compared to bone marrow (BM)-derived MSCs, especially with increased expression of pluripotent and multipotent stem cell and endothelial cell-associated genes. The isolation of functional MSCs from hESC-derived CD34(+)CD73(-) cells provides improved understanding of MSC development and utilization of pluripotent stem cells to produce MSCs suited for novel regenerative therapies.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center